SECTION 5

SELECTION OF AN ALTERNATIVE

5.1 General Information

5.1.1 Introduction

A cost-effective-analysis was prepared for each of the feasible alternatives listed in Section 4. The cost-effective-analysis takes into consideration the initial capital (project) costs; annual operation, maintenance and replacement cost, and salvage values. All of the estimated costs were brought back into today's costs for comparison purposes. A current Federal discount interest rate of 0.5% was utilized for the cost-effective-analysis. A 20-year planning period is used for the cost-effective-analysis.

The estimated construction costs are based on manufacturer's quotations, estimating manuals, recent bid construction prices and estimating experience and have been slightly inflated, as the construction bids would most likely not be received until sometime next year.

The estimated salvage values are arrived at based on their future worth at the end of the 20-year planning period.

Besides the estimated construction costs there are other costs associated with undertaking a project. These other costs are identified as non-construction costs, which are explained in the following paragraphs of this section.

5.1.2 Non-Construction Costs

1. General

Non-construction costs are those costs that are associated with preparing a project for construction, monitoring the project during construction, and follow-up after construction is completed. Non-construction costs generally include engineering, legal and administrative, land acquisition and easements, grant administration, sometimes direct equipment purchases, accounting services, start-up costs and contingencies. As a whole, non-construction costs can range between 10% and 40% of the total project cost depending on the method utilized to finance the project and size of the project.

2. Engineering

Engineering generally includes the associated costs for preparing detailed studies, design plans and specifications, assisting with project financing, field exploration surveys, preparing permit applications, easement preparation, and construction shop drawing review, construction observation and post construction follow-up activities.

3. Legal and Administrative

Legal services are often required to assist with the preparation of bond and/or rate ordinances that may be required. Some of the funding agencies for projects of this type require additional legal documents. Administrative costs include such things as permit fees, bid advertising fees, newspaper legal advertising, etc. A bond council may need to be retained depending on the method utilized to fund the project.

4. Grant Administration

A certified Grant Administrator is required for projects that are partially funded by the Indiana Office of Community and Rural Affairs Community Focus Fund. The Grant Administrator is generally responsible for handling the forms and paperwork associated with this funding program, reviewing payrolls during construction, drawing-down funds and performs several other miscellaneous duties.

5. Land Acquisition

Land acquisition is commonly referred to as the process of obtaining needed site property and easements for pipelines, lift stations and wastewater treatment plant.

6. Contingencies

Budgeted contingency money is used to pay for unexpected, unforeseen, or unanticipated costs associated with the project. Contingency money may be needed for construction or non-construction items. Contingencies are typically based on a percentage of the project cost and that percentage is determined by the project complexity. During the study and design phases of a project contingency is usually estimated at 10% of the construction costs and after construction bids are received and the costs are better known, then the contingency amount is reduced to 3% to 5%.

5.2 Life-Cycle Cost Analysis - Collection System Alternatives

Based on the information provided in Section 4, the following collection system alternatives have been deemed feasible:

- Conventional gravity for Bean Blossom and low pressure with grinder pumps for Woodland Lake, Little Fox Lake and Freeman Ridge Areas
- Low pressure with grinder pumps for Bean Blossom, Woodland Lake, Little Fox Lake and Freeman Ridge Areas
- Low pressure with septic tanks (STEP) for Bean Blossom, Woodland Lake, Little Fox Lake and Freeman Ridge Areas

The opinion of probable project costs associated with the listed collection system alternatives is provided in Table 5.1.

Table 5.1 Collection System Alternatives - Opinion of Probable Pro	ject Costs
Alternative	Project Cost
Conventional gravity for Bean Blossom and low pressure with grinder pumps for Woodland Lake, Little Fox Lake & Freeman Ridge Areas	\$6,435,510
Low pressure with grinder pumps for Bean Blossom, Woodland Lake, Little Fox Lake & Freeman Ridge Areas	\$5,923,490
Low pressure with septic tanks (STEP) for Bean Blossom, Woodland Lake, Little Fox Lake & Freeman Ridge Areas	\$5,481,110

The following salvage values for the listed alternatives is provided in Table's 5.2 through 5.10.

	Table	5.2		
Estimated Salvage Value - Conventional Gravity Bean Blossom				
Item	Estimated	Estimated Life	Estimated Value	
	Current Value	(years)	at Year 20	
Lift Station Pumps	\$54,000	15	\$40,500	
Grinder Pumps	\$18,000	12	\$10,800	
Air Release Valves	\$13,500	15	\$10,125	
Gravity Sewer	\$140,000	50	\$84,000	
Force Main/Pressure	\$8,200	50	\$4,920	
Sewer				
Manholes, Wet	\$62,400	50	\$37,400	
Wells & Valve				
Vaults				
Simplex Grinder	\$16,200	50	\$9,720	
Pump Tanks	1			
•	Total		\$197,465	

Table 5.3
Estimated Salvage Value – Pressure Sewers with Grinder Pump Stations
Bean Blossom

Item	Estimated Current Value	Estimated Life (years)	Estimated Value at Year 20
Lift Station Pumps	\$7,500	15	\$7,500
Grinder Pumps	\$162,000	15	\$121,500
Air Release Valves	\$16,500	15	\$12,375
Pressure Sewers	\$49,620	50	\$29,770
Valve Vaults	\$21,600	50	\$12,960
Simplex Grinder Pump Tanks	\$145,800	50	\$87,480
Duplex Lift Station Pump Tanks	\$5,000	50	\$3,000
•	Total		\$274,585

Table 5.4
Estimated Salvage Value – Pressure Sewers with Grinder Pump Stations
Woodland Lake

Item	Estimated Current Value	Estimated Life (years)	Estimated Value at Year 20
Grinder Pumps	\$158,000	15	\$118,500
Air Release Valves	\$25,500	15	\$19,125
Lift Station Pumps	\$10,000	15	\$7,500
Pressure Sewers	\$46,860	50	\$28,100
Valve Vaults	\$8,800	50	\$5,280
Simplex Grinder Pump Tanks	\$142,200	50	\$85,320
•	Total		\$263,825

Table 5.5
Estimated Salvage Value – Pressure Sewers with Grinder Pump Stations
Little Fox Lake

Item	Estimated	Estimated Life	Estimated Value
	Current Value	(years)	at Year 20
Grinder Pumps	\$36,000	15	\$27,000
Air Release Valves	\$6,000	15	\$4,500
Pressure Sewers	\$7,160	50	\$4,300
Valve Vaults	\$3,200	50	\$1,920
Simplex Grinder	\$32,400	50	\$19,440
Pump Tanks			
	Total		\$57,160

Estimated Salvage	Table Value – Pressure S	ewers with Grind	er Pump Stations
Item	Freeman Estimated Current Value	Estimated Life (years)	Estimated Value at Year 20
Grinder Pumps	\$64,000	15	\$48,000
Air Release Valves	\$7,500	15	\$5,625
Pressure Sewers	\$18,940	50	\$11,360
Valve Vaults	\$5,600	50	\$3,360
Simplex Grinder Pump Tanks	\$57,600	50	\$34,560
*	Total		\$102,905

Estimated Salva	Table ge Value – Pressure	e Sewers with Sept	tic Tanks Bean	
Item Estimated Estimated Life Estimated Value Current Value (years) at Year 20				
Lift Station Pumps	\$10,000	15	\$7,500	
Effluent Pumps	\$120,000	15	\$90,000	
Air Release Valves	\$16,500	15	\$12,375	
Pressure Sewers	\$48,580	50	\$29,150	
Valve Vaults	\$21,600	50	\$12,960	
Septic Tanks	\$190,000	50	\$146,000	
•	Total		\$297,985	

Estimated Salvage	Table Value – Pressure S		Tanks Woodland	
	Lak	e		
Item Estimated Estimated Life Estin Current Value (years) a				
Effluent Pumps	\$118,500	15	\$88,875	
Air Release Valves	\$25,500	15	\$19,125	
Pressure Sewers	\$53,600	50	\$32,160	
Valve Vaults	\$8,800	50	\$5,280	
Septic Tanks	\$79,000	50	\$47,400	
	Total		\$192,840	

Estimated Salvage	Table Value – Pressure S		Tanks Little Fox		
	Lak	e			
Item Estimated Estimated Life Estimated V Current Value (years) at Year 2					
Effluent Pumps	\$27,000	15	\$20,250		
Air Release Valves	\$6,000	15	\$4,500		
Pressure Sewers	\$11,080	50	\$6,650		
Valve Vaults	\$3,200	50	\$1,920		
Septic Tanks	\$18,000	50	\$10,800		
	Total		\$44,120		

Estimated Salvage	Table : e Value – Pressure S Ridg	Sewers with Septic	Tanks Freeman
Item	Estimated Value at Year 20		
Effluent Pumps	\$48,000	15	\$36,000
Air Release Valves	\$7,500	15	\$5,625
Pressure Sewers '	\$13,680	50	\$8,205
Valve Vaults	\$5,600	50	\$3,360
Septic Tanks	\$32,000	50	\$19,200
	Total		\$72,390

A life-cycle-cost summary of the collection system alternatives for Bean Blossom, Woodland Lake, Little Fox Lake and Freeman Ridge are provided in Table's 5.11 through 5.14.

	Table 5.11			
Present Worth Cost Compar	ison of Collection	Alternatives - Bean Blo	ssom	
Item	Alternative			
	Gravity	Pressure w/ Grinder Pumps	Pressure w/Effluent Pumps	
Project Cost	\$2,858,250	\$2,346,230	\$2,129,040	
Annual O, M & R Cost	\$48,560	\$55,150	\$48,220	
Salvage Value at year 20	\$197,465	\$274,585	\$297,985	
	esent Worth Summ years @ 0.5% inte			
a) Total Project Cost	\$2,858,250	\$2,346,230	\$2,129,040	
b) PW of Annual O, M & R (PW factor 18.987)	\$922,010	\$1,047,130	\$915,550	
c) PW of Salvage Value (PW factor 0.9051)	\$178,730	\$248,530	\$269,710	
Total (a+b-c) \$3,958,990 \$3,641,890 \$3,314,30				
Ranking	3	2	1	

Present Worth Cost Compa	Table 5.12 arison of Collection Alternatives	s – Woodland Lake	
Item		native	
	Pressure w/ Grinder Pumps	Pressure w/Effluent Pumps	
Project Cost	\$2,148,660	\$2,039,160	
Annual O, M & R Cost	\$36,450	\$34,700	
Salvage Value at year 20	\$263,825	\$192,840	
	Present Worth Summary 20 years @ 0.5% interest)		
a) Total Project Cost	\$2,148,660	\$2,039,160	
b) PW of Annual O, M & R (PW factor 18.987)	\$692,080	\$658,850	
c) PW of Salvage Value (PW factor 0.9051)	\$238,790	\$174,540	
Total (a+b-c)	\$3,079,530	\$2,872,550	
Ranking	2	1	

	Table 5.13	
Present Worth Cost Compa	arison of Collection Alternatives	s – Little Fox Lake
Item	Alter	native
	Pressure w/ Grinder Pumps	Pressure w/Effluent Pumps
Project Cost	\$532,290	\$553,940
Annual O, M & R Cost	. \$5,500	\$4,630
Salvage Value at year 20	\$57,160	\$44,120
	Present Worth Summary	
(2	20 years @ 0.5% interest)	
a) Total Project Cost	\$532,290	\$553,940
b) PW of Annual O, M & R (PW factor	\$104,430	\$87,910
18.987)		
c) PW of Salvage Value (PW factor	\$51,740	\$39,930
0.9051)		
Total (a+b-c)	\$688,460	\$681,780
Ranking	1	2

Present Worth Cost Compa	Table 5.14 arison of Collection Alternatives	s – Freeman Ridge
Item	Alteri	native
	Pressure w/ Grinder Pumps	Pressure w/Effluent Pumps
Project Cost	\$896,310	\$758,970
Annual O, M & R Cost	\$9,480	\$7,820
Salvage Value at year 20	\$102,905	\$72,390
	Present Worth Summary 20 years @ 0.5% interest)	
a) Total Project Cost	\$896,310	\$758,970
b) PW of Annual O, M & R (PW factor 18.987)	\$180,000	\$148,480
c) PW of Salvage Value (PW factor 0.9051)	\$93,140	\$65,520
Total (a+b-c)	\$1,169,450	\$972,970
Ranking	2	1

Considering that the conventional gravity sewer alternative for the Bean Blossom Area has a present-worth cost that is considerably higher than the other alternatives, it will not be considered further. A summary of the present worth costs for the pressure with grinder pumps and pressure with septic tanks for all of the Areas combined is provided Table 5.15.

	Table 5.15			
Present Worth Cost	Comparison Alternatives - All Ar	reas Combined		
Item	Alternative			
	Pressure w/ Grinder Pumps	Pressure w/Effluent Pumps		
Total Present Worth	\$8,579,330	\$7,841,600		
Ranking	2 1			

5.3 Non-Monetary Factors - Collection System Alternatives

A listing of the advantages and disadvantages of each collection system considered are listed in Table 5.16.

Table 5.16 Collection System Types – Advantages/Disadvantages				
Collection System	Advantages	Disadvantages		
Gravity	Widely usedSimpleReliable	 Terrain dependent Large excavations More construction related environmental impacts More prone to I/I 		
Low Pressure w/Grinder Pump Sta's	 Not terrain dependent Solids ground up Less excavation and environmental impacts than gravity 	 Some policing of what is conveyed to the pumping structure Higher maintenance 		
Low Pressure w/Septic Tanks	 Not terrain dependent Less excavation and environmental impacts than gravity Requires fewer lift stations Least cost 	 Some policing of what is conveyed to the pumping structure (cleaning outlet filters) Periodic solids removal from septic tanks More prone to I/I than low pressure w/grinder pumps Potential for odor complaints from septic wastewater in coll. System & at WWTP 		

The small diameter pressure sewer collection systems are the least cost based on the life-cycle-cost summary and offer the greatest flexibility because they can overcome hilly terrain, such as that found in most of the study areas. In addition, a smaller quantity of excavation is required for these types of systems lessening negative environmental impacts. With the recent advancement and increased popularity of the directional drilling (boring) method of utility pipeline

installation, pressure sewers could be installed in the study area with minimized disturbance to the public. The gravity sewer alternative is approximately 15% on the average, higher than the low pressure with grinder pumps, or with septic tanks alternatives for Bean Blossom. Considering that the present worth value of the grinder pump stations is approximately 9% higher than the septic tank effluent systems on a present-worth analysis basis and taking into consideration the advantages and disadvantages of the alternatives, and the lower O, M & R costs, it is recommended that the low-pressure system with septic tanks be selected for all Areas.

5.4 Life-Cycle Cost Analysis - Treatment Plant

Based on the information provided in Section 4, the following conveyance and treatment system alternatives have been deemed feasible:

- Conveyance and treatment at Helmsburg
- Conveyance to Nashville for treatment
- Extended Aeration Activated Sludge WWTP at Bean Blossom
- Algaewheel WWTP at Bean Blossom
- MBR or MBBR WWTP at Bean Blossom

The opinion of probable project costs associated with the listed conveyance and treatment system alternatives is provided in Table 5.17.

Table 5.17 Conveyance & Treatment System Alternatives - Opinion of Probable Project Costs		
Alternative	Project Cost	
Conveyance and treatment at Helmsburg	\$2,554,305	
Conveyance to Nashville for treatment	\$2,277,460	
Extended aeration (AeroMod) WWTP at Bean Blossom	\$1,901,435	
Algaewheel WWTP at Bean Blossom	\$2,755,370	
MBR or MBBR WWTP at Bean Blossom	\$2,042,230	

The following salvage values for the listed alternatives are provided in Table's 5.18 through 5.22.

	Table 5.18	3		
Estimated Salvage Value - Conveyance & Treatment at Helmsburg				
Item	Estimated Current	Estimated	Estimated Value	
	Value	Life (years)	at Year 20	
Lift Station Pumps &	\$12,000	15	\$9,000	
Controls				
Blowers	\$50,000	15	\$37,500	
Chemical Feed	\$3,200	15	\$2,400	
Pumps				
Air Release Valves	\$22,500	15	\$16,875	
Plant Piping &	2 & \$12,000		\$7,200	
Valves				
Force Main	\$67,000	50	\$40,000	
Concrete Structures	\$25,000	50	\$15,000	
Wet Well & Valve	\$17,000	50	\$10,200	
Vault				
Control/Storage	\$35,000	50	\$21,000	
Building				
	Total		\$159,175	

	Table 5.19			
Estimated Salvage Value - Conveyance to Nashville				
Item	Estimated Current	Estimated	Estimated Value	
	Value	Life (years)	at Year 20	
Lift Station Pumps & controls	\$54,000	15	\$40,500	
Air Release Valves	\$27,000	15	\$20,250	
Force Main	\$208,750	50	\$125,250	
Wet Wells & Valve Vaults	\$24,400	50	\$14,650	
	Total		\$200,650	

T	Table 5.20		*****	
Item	Salvage Value – Exte Estimated Current Value	Estimated Life (years)	Estimated Value at Year 20	
Blowers	\$40,000	15	\$30,000	
Chemical Feed Pumps	\$3,200	15	\$2,400	
Air Release Valves	\$7,500	15	\$4,500	
Force Main	\$29,400	50	\$17,640	
Plant Piping & Valves	\$12,000	50	\$7,200	
Concrete Structures	\$22,500	50	\$13,500	
Valve Vaults	\$4,000	50	\$2,400	
Control/Storage Building	\$35,000	50	\$21,000	
Total \$98,640				

Table 5.21 Estimated Salvage Value – Algaewheel WWTP				
Item	Estimated Current Value	Estimated Life (years)	Estimated Value at Year 20	
Chemical Feed Pumps	\$3,200	15	\$2,400	
Air Release Valves	\$7,500	15	\$4,500	
Force Main	\$29,400	50	\$17,640	
Plant Piping & Valves	\$12,000	50	\$7,200	
Concrete Structures	\$48,000	50	\$28,800	
Valve Vaults	\$4,000	50	\$2,400	
Greenhouse Building	\$100,000	50	\$60,000	
Control/Storage Building	\$25,000	50	\$15,000	
Total \$137,940				

Table 5.22 Estimated Salvage Value – MBR or MBBR WWTP				
Item	Estimated Current Value	Estimated Life (years)	Estimated Value at Year 20	
Blowers	\$33,500	15	\$25,125	
Chemical Feed Pumps	\$3,200	15	\$2,400	
Air Release Valves	\$7,500	15	\$4,500	
Force Main	\$29,400	50	\$17,640	
Plant Piping & Valves	\$12,000	50	\$7,200	
Tanks & Structures	\$100,000	50	\$60,000	
Valve Vaults	\$4,000	50	\$2,400	
Control/Storage Building	\$35,000	50	\$21,000	
	Total		\$140,265	

A life-cycle-cost summary of the conveyance and treatment system alternatives for Bean Blossom, Woodland Lake, Little Fox Lake and Freeman Ridge Areas are provided in Table 5.23.

		Table 5.23			
Present Wo	orth Cost Compariso	n of Conveyance	& Treatment Al	ternatives	
Item		A	lternative		
	Conveyance to Helmsburg	Conveyance to Nashville	Extended Aeration WWTP	Algaewheel WWTP	MBR or MBBR WWTP
Project Cost	\$2,554,305	\$2,277,460	\$1,901,435	\$2,755,370	\$2,042,230
Annual O, M & R Cost	\$95,150	\$102,580	\$95,100	\$79,400	\$102,830
Salvage Value at year 20	\$159,175	\$200,650	\$98,640	\$137,940	\$140,265
	Preser	nt Worth Summary			
	(20 yea	ars @ 0.5% interest	:)		
a) Total Project Cost	\$2,554,305	\$2,277,460	\$1,901,435	\$2,755,370	\$2,042,230
b) PW of Annual O, M & R (PW factor 18.987)	\$1,806,610	\$1,947,690	\$1,805,660	\$1,507,570	\$1,952,430
c) PW of Salvage Value (PW factor 0.9051)	\$144,070	\$181,610	\$89,280	\$124,850	\$126,950
Total (a+b-c)	\$4,504,985	\$4,406,760	\$3,796,375	\$4,387,790	\$4,121,610
Ranking	5	4	1	3	2

5.5 Non-Monetary Factors – Treatment System Alternatives

A listing of the advantages and disadvantages of each conveyance and treatment system considered are listed in Table 5.24.

	Table 5.24 Treatment System Types – Advanta	ges/Disadvantages
Treatment System	Advantages	Disadvantages
Conveyance and Treatment at Helmsburg RSD	No operation and maintenance associated with treatment and disposal if under the control of the Helmsburg RSD Potentially lowest user rate with added Helmsburg customers if HRRSD & Brown Co. RSD combine	Treatment costs would be under the control of an outside entity unless regionalization occurred with local representation Requires a conveyance line and lift station with odor control Requires significant plant upgrade Higher project cost NPDES permit required if under the control of Brown Co. RSD, otherwise would be required of HRSD HRSD does not want to regionalize or accept wastewater if existing rates are affected
Conveyance to Nashville	No maintenance associated with treatment and disposal No NPDES permit required Additional customers can be served along the conveyance route	Treatment costs would be under the control of an outside entity Requires a long conveyance line and lift station with odor control Unknown as to whether Nashville needs to make WWTP upgrades to accept Brown Co. RSD flow Potential resistance from property owners along the conveyance route for easements & annexation waivers
Extended Aeration Activated Sludge	 Capable of producing high quality effluent Minimal land use Most used of local treatment alternatives Lowest cost on a PW basis Capable of expansion with common wall concrete construction More control of operations and user rate impacts 	 Certified operator attention required Routine sludge removal and disposal NPDES permit required Higher O,M&R cost Potential resistance from nearby neighbors
Algaewheel WWTP	 Minimal land use Lowest O,M&R cost Lowest energy use local treatment alternative More control of operations and user rate impacts 	 Certified operator attention required Routine sludge removal and disposal NPDES permit required Technology fairly new Highest cost on a PW basis Potential resistance from nearby neighbors
MBR or MBBR WWTP	 Minimal land use More control of operations and user rate impacts 	 Certified operator attention required Routine sludge removal and disposal Highest O,M&R cost NPDES permit required MBR biofilm membranes most likely to require more operator attention Potential resistance from nearby neighbors

As can be seen from Table 5.23, the extended aeration treatment plant at Bean Blossom is the most cost-effective alternative on a present worth basis. The Conveyance to Helmsburg alternative is not feasible, as the HRSD Board has indicated that they do not want to receive the study area flows, or merge with the Brown County RSD and impact their existing users. However, there other factors besides monetary such as reliability, expandability and implementability that should be considered in selecting the best alternative. The conveyance to Nashville and the extended aeration plant at Bean Blossom alternatives are considered equal and best when it comes to reliability. The WWTP at Bean Blossom alternatives are considered equal and best in regards to implementability, as environmental considerations, easement acquisition and construction obstacles may be encountered with the Conveyance to Nashville alternative. In addition, the Nashville Agreement includes a requirement that anyone being served within 3 – miles from their Corporation boundary be requested to sign an annexation waiver, which could potentially impact the implementability. Meetings have occurred between representatives of the BCRSD Board and Town of Nashville, the most recent being 2/13/2018. The Town is hesitant to accept wastewater flows from the BCRSD, as they have two developments pending and are concerned about having adequate WWTP capacity. Refer to Appendix I for a draft Nashville Wholesale Wastewater Treatment Agreement, correspondence and meeting minutes. As far as expandability, the AeroMod WWTP at Bean Blossom is expandable with the Algaewheel WWTP at Bean Blossom being the easiest to expand. The 8-inch conveyance force main to Nashville has excess capacity available, however due to its length, additional flows would be limited. addition, an estimated 46 additional customers could be connected along the conveyance line to Nashville. Considering monetary and other factors, the extended aeration activated sludge WWTP at Bean Blossom alternative is recommended.

SECTION 6

PROPOSED PROJECT

6.1 Wastewater Improvements

The wastewater improvements consist of the construction of a septic tank effluent sewer (STEP) at Bean Blossom, Woodland Lake, Little Fox Lake and Freeman Ridge Areas, with a WWTP along Gatesville Road near Bean Blossom. Refer to Exhibit 6.1.

Refer to Exhibit's 6.1 for a map showing the proposed wastewater improvements.

A preliminary design summary for the proposed wastewater improvement is provided in Appendix J.

6.2 Project Cost Estimate

An opinion of probable project costs for the recommended improvements described in Section 5, is provided in Table 6.1. The non-construction costs in Table 6.1 should be considered as preliminary until the various professionals are contracted for services and the funding sources determined.

Table 6.1 Proposed Wastewater Project Opinion of Probable Project Costs					
		onstruction	jeer cos		
Item No.	Description	Quantity	Unit	Unit Cost	Total
1	6" Force Main/Pressure Sewer	3,200	LF	\$25	\$96,100
2	4" Force Main Pressure Sewer	14,850	LF	\$22	\$326,700
3	3" Pressure Sewer	14,565	LF	\$21	\$305,865
4	2" Pressure Sewer	16,100	LF	\$19	\$305,900
5	1-1/4" Pressure Sewer	32,950	LF	\$15	494,250
6	Septic Tanks w/Effluent Pump	209	EA	\$5,000	\$1,045,000
7	Effluent Pump Electrical & Control Panels	212	EA	\$1,000	\$212,000
8	Pressure Sewer Valve Assemblies	209	EA	\$500	\$104,580
9	Pressure Sewer/Force Main Air Release Valves	37	EA	\$3,000	\$111,000
10	Line Flushing Valve Pits	49	EA	\$2,000	\$98,000
11	Compacted Granular Backfill	6,400	LF	\$18	\$115,200
12	Pavement Replacement	400	LF	\$50	\$20,000
13	Stone Driveway/Roadway Replacement	4,500	LF	\$12	\$54,000

Item	Description	6.1 Continu	Unit	Unit Cos	t Total
No.	Description	Quantity	Onit	Unit Cos	t Total
14	Bill Monroe C'Ground/Festival Septic Tank & Pumps	1	LS	\$100,00	00 \$100,000
15	Staley's Mobile Home Park	1	LS	\$45,00	90 \$45,000
16	Septic Tank & Pumps Brownie's Restaurant Septic Tank & Pumps	1	LS	\$30,00	90 \$30,000
17	6" Force Main/Pressure Sewer, Directional Bores	100	LF	\$6	50 \$6,000
18	4" Pressure Sewer, Directional Bores	1,100	LF	\$5	\$55,000
19	3" Pressure Sewer, Directional Bores	3,400	LF	\$4	\$153,000
20	2" Pressure Sewer, Directional Bores	950	LF	\$3	\$28,500
21	1-1/4" Pressure Sewer, Directional Bores	1,600	LS	\$2	32,000
22	Treatment Plant	1	LS	\$1,254,35	50 \$1,254,350
23	Spare Parts	1	LS	\$10,00	
24	Miscellaneous (Site Restoration, Traffic Control, Rule 5 Permit, etc.)	1	LS	\$492,60	\$492,600
25	Mobilization, Bond & Insurance	1	LS	\$276,00	90 \$276,000
	Subtotal Cons	struction			\$5,771,045
	Non-	-Constructio	n		
Engine	eering Study & Environmental Re	port			\$13,000
Engine	eering Design and Construction				\$475,000
Additi	onal Engineering				\$75,000
Constr	ruction Inspection				\$200,000
Legal					\$15,000
Bond (Council				\$30,000
Financ		\$20,000			
CFF G Standa	rant Administration (includes Env	vironmental I	Review &	Labor	\$48,000
	Easement Acquisition				\$58,000
Soils Evaluation					\$12,000
Administrative					\$2,000
Maintenance Equipment (Truck & Portable Generator)					\$59,300
Construction Contingency					\$577,100
Subtotal Non-Construction					\$1,584,400
Total Project					\$7,355,445

6.3 Annual Operating Budget

In addition to covering operation and maintenance expenses there is a need for funding reserve amounts to fund short-lived assets (i.e. equipment, etc. that has less than a 20-year life). These amounts may also be referred to as replacement costs. In addition to these assets previously shown in the Section 4 tables a maintenance truck will be included having a value of \$28,000 and an estimated 10-year life, which equates to an annual amount needed of \$2,800 are included. The energy costs shown in the O, M & R tables for the STEP Collection Systems in Section 4 have been removed from the estimated O, M & R for the Sewer District, as these costs will be borne by the customer.

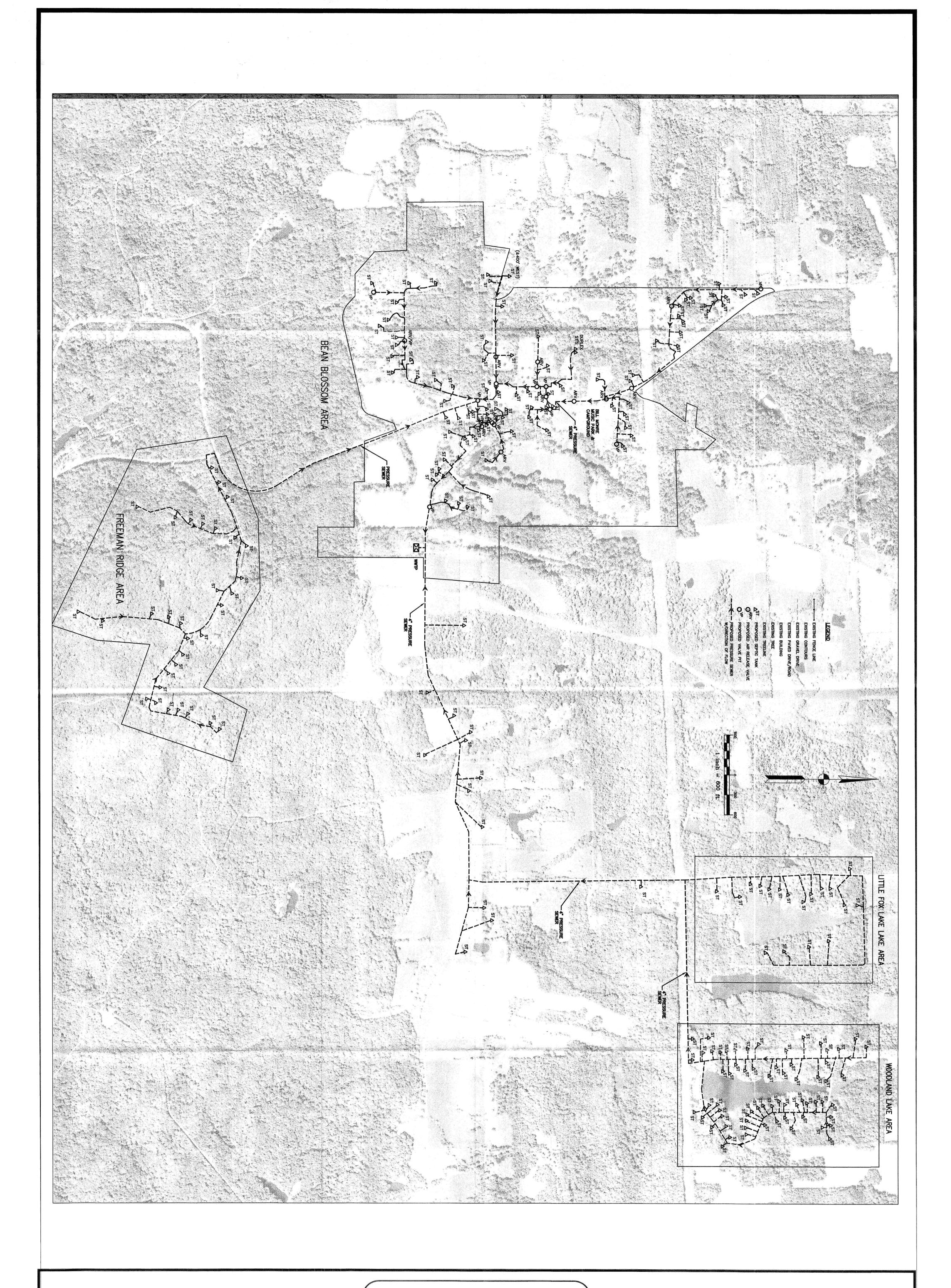

A summary of the estimated operation and maintenance expenses, including the short-lived assets in provided in Table 6.2.

Table 6.2 Estimated Annual O, M & R Costs for Proposed Project				
Item	Estimated Annual Amount			
Labor (Salary, Benefits, Payroll Tax, Insurance, etc.)	\$57,600			
Energy (Power Costs)	\$32,800			
Materials and Supplies (including chemicals)	\$5,000			
Repairs	\$2,150			
Short-Lived Assets (Replacement)	\$33,420			
Outside Services (Tank Cleaning, Billing, Certified	\$25,000			
Operator, etc.)				
Biosolids Handling and Disposal	\$5,000			
Insurance	8,500			
Conferences, Training, etc.	\$1,200			
Professional Services (Attorney, Engineer, Financial	\$5,000			
Advisor, etc.)				
Total	\$175,670			

The potential sources for funding the proposed project are a CFF grant an RD grant and RD loan, or SRF loan. The RD issues direct loans for wastewater projects of this type and are available to rural areas and to cities and towns with a population of 10,000 or less. Funds are available to public entities, such as municipalities, counties, special-purpose districts and Indiana tribes. In addition, funds may be made available to corporations operated on a not-for-profit basis. Priority will be given to public entities, in areas with less than 5,500 people, to construct, extend or improve wastewater facilities. The maximum term for loans is 40 years. The interest rate is based on the MHI. Based on the 2010 census tract map, both the Bean Blossom, Woodland Lake and Little Fox Lake Areas could qualify for the RD poverty rate if adequate documentation was provided that there exists a health and safety issue. The Freeman Ridge Area is assumed to qualify for the RD poverty interest rate. An RD grant up to 75% of the eligible project costs could be available if in the poverty range. RD grant amounts are also based on the reasonable level of user rates determined by the RD and project need. The CFF is a grant program administered by the OCRA and funded with federal Community Development Block Grant (CBDG) dollars. These grants support a variety of construction projects that either benefit low to moderate-income persons or eliminate blight in communities. At least 51% of the population must be at the low to moderate-income level. The CFF program is generally only available to cities, incorporated towns and counties. The CFF program is very competitive and requires a minimum 10% match with the maximum grant amount being \$700,000. Therefore, the County would need to apply for the grant on behalf of the sewer district. The SRF is a federal loan program available to cities, towns, counties, regional sewer districts, conservancy districts and Water Authorities and is administered by the IDEM. The loan money is provided for treatment plant improvements, sewer line extensions, upgrades, combined sewer overflow corrections and infiltration/inflow projects.

Table 6.3 provides various funding amounts and estimated user rates based on 275 EDU's. A RD loan for a 40-year financing period at an interest rate of 2.375% was used to estimate a user rate. An interest rate of 2.00% and 20-year financing period was utilized for a SRF loan. The SRF program also offers a 35-year financing period at a slightly higher interest rate for the pipeline portion of the project since pipes have useful life of greater than 50 years. An interest rate of 2.25% and 50% of the estimated project costs is utilized for this option. These interest rates are subject to change on a quarterly basis.

Table 6.3 Estimated User Rates – Funding Scenarios					
Funding Scenario	Loan Amount	Total Annual Debt Service Amount	Total Annual Reserve Amount	O, M & R	Est. Monthly Rate/EDU
RD Loan – 2.375%	\$7,355,445	\$287,598	\$28,760	\$175,670	\$149.10
75% RD Grant & RD Loan @ 2.375%	\$1,838,861	\$71,899	\$7,190	\$175,670	\$77.20
75% RD Grant + \$700k CFF Grant & RD Loan @ 2.375%	\$1,663,861	\$65,057	\$6,506	\$175,670	\$74.92
SRF Loan @ 2% - 20 years	\$7,355,445	\$450,153	\$112,538	\$175,670	\$223.75
SRF Loan @ 2% - 20 Years & 2.2% - 35 Years	\$7,355,445	\$375,863	\$93,966	\$175,670	\$195.61
SRF Loan @ 2% - 20 Years, 2.25% - 35 Years & \$700K CFF Grant	\$6,655,445	\$333,023	\$83,256	\$175,670	\$179.38

LADD ENGINEERING, INC.

LEBANON, INDIANA

Brown County RSD
PRELIMINARY ENGINEERING REPORT

Exhibit 6.1
Selected Plan Layout
Bean Blossom